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ABSTRACT

We prove an existence result of entropy solutions for the nonlinear
parabolic problems: Bb(x’")+A(u)—div((D(x, t,u))+H(x, t,u,Vu) = f,and
A(u) =—div(a(x,t,u,Vu)) is a Leary-Lions operator defined on the inho-
mogeneous Musielak-Orlicz space, the term D (x,t,u) is a Crathéodory
function assumed to be continuous on u and satisfy only the growth con-
dition O(x,t,u) < c(x, t)]\_/I_lM(x, agu), prescribed by Musielak-Orlicz
functions M and M which inhomogeneous and not satisfy A,-condition,
H(x,t,u,Vu) is a Crathéodory function not satisfies neither the sign
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condition or coercivity and f € L'(Qr).

1 Introduction

Let Q be a bounded open set of RN (N >2), T is a
positive real number, and Qr = Q x(0,T). Consider
the following nonlinear Dirichlet equation:

W) 1 A(u) - div(@(x, t,u) + H(x, t,u, Vir) = f,
u(x,t)=0 on dQx(0,T),
b(x,u)(t=0)=b(x,uy) in Q.

(1)
where A(u) = —div(a(x,t,u,Vu)) is a Leary-Lions oper-
ator defined on the inhomogeneous Musielak-Orlicz-
Sobolev space Wol’xLM(QT), M is a Musielak-Orlicz-
function related to the growths of the Carathéodory
functions a(x,t,u,Vu), ®(x,t,u) and H(x,t,u,Vu) (see
assumptions , and . b:QOxIR —>1Risa
Carathéodory function such that for every x € Q, b(x,.)
is a strictly increasing C! (IR)-function, the data f and
b(.,up) in L'(Q7) and L}(Q) respectively.

Starting with the prototype equation:

Ju

ot
In the Classical Sobolev-spaces, the authors in [1] have
proved the existence of weak solutions, with ¢(.,.) = 0.
For ¢(.,.) € L>(Qr) and p = 2, in [2] have proved the
existence of entropy solutions, recently in [3] have
proved an existence results of renormalized solutions

— 8p(u) +div(c(, )ul’ " u) + b|Vul® = f,in Qr.

in the case where p > 2 and ¢(.,.) € L"(Qr) with r > I;%p}
and by in [4] for more general parabolic term. For the
elliptic version of the problem (1), more results are
obtained see e.g. [5-7].

In the degenerate Sobolev-spaces an existence
results is shown in [8] without sign condition in
H(x,t,u,Vu).

In the Orlicz-Sobolev spaces, the existence of en-
tropy solutions of the problem in [9] is proved
where H(x,t,u,Vu) = 0 and the growth of the first
lower order @ prescribed by an isotropic N-function
P with (P << M). To our knowledge, differential equa-
tions in general MusielakSobolev spaces have been
studied rarely see [10-14], then our aim in this paper
is to overcome some difficulties encountered in these
spaces and to generalize the result of [4, 9, 15, 16], and
we prove an existence result of entropy solution for
the obstacle parabolic problem (1), with less restrictive
growth, and no coercivity condition in the first lower
order term @, and without sign condition in the second
lower order H, in the framework of inhomogeneous
Orlicz-Sobolev spaces Wol’xLM(QT), and N-function M,
defining space does not satisfy the A,-condition.

This paper is organized as follows. In section 2,
we recall some definitions, properties and technical
lemmas about Musielak Orlicz Sobolev , In section 3
is devoted to specify the assumptions on b, D, f, u,
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giving the definition of a entropy solution of (1) and
we establish the existence of such a solution Theorem
In section 4, we give the proof of Theorem [4]

2 Musielak-Orlicz space and a
technical lemma

In this part we will define the musielak-Orlicz function
which control the growth of our operator.

2.1 Musielak-Orlicz function

Let Q be an open subset of IRN (N > 2), and let M be a
real-valued function defined in () x IR, and satisfying
conditions:

(Dq):M(x,.) is an N-function for all x € Q) (i.e. convex,

non-decreasing, continuous, M(x,0)=0,

M()

M(x,0) > 0 for t > 0, lim;_,gsup,cq = 0 and

M(x H_ o).

lim; o infyeq
(Dy):M(.,t)is a measurable function for all ¢ > 0.
A function M which satisfies the conditions ®; and
@, is called a Musielak-Orlicz function. For a Musielak-
Orlicz function M we put M, (t) = M(x,t) and we as-
sociate its non-negative reciprocal function M;!, with
respect to t, that is My (M(x,t)) = M(x, M;1(t)) = t.
Let M and P be two Musielak-Orlicz functions, we
say that P grows essentially less rapidly than M at
O(resp. near infinity, and we write P << M, for every

P(x, ct)) -0

positive constant ¢, we have lim;_, ( SUPeQ Mx1)

(resp.lim;_,, ( SUp,cO ﬁ’( Ct;) = O).

Remark 1 [12] If P << M near infinity, then Ye > 0
there exist k(e) > 0 such that for almost all x € (3 we have
P(x,t) <k(e)M(x,et) Vt=>0.

2.2 Musielak-Orlicz space

For a Musielak-Orlicz function M and a mesurable
function u : Q — IR, we define the functionnal

fo,Iu

The set Ky(Q) = {u QO — IR mesurable
om0 (1) < oo} is called the Musielak-Orlicz class. The
Musielak-Orlicz space Ly (Q) is the vector space gen-
erated by Kj;(Q); that is, Ly;(Q2) is the smallest linear
space containing the set K;(Q)). Equivalently

om0 (u

Ly(Q)={u:QQ - IR mesurable: pM’Q(%)<OO,

for some A >0}

For any Musielak-Orlicz function M, we put M(x, s)=
Sup,sq(st — M(x,s)). M is called the Musielak-Orlicz
function complementary to M (or conjugate of M) in
the sense of Young with respect to s. We say that a se-
quence of function u,, € L);(€2) is modular convergent
to u € Ly;(Q) if there exists a constant A > 0 such that

1imn—>oo PM,Q( u",\iu ) =0.

www.astesj.com

This implies convergence for o (ITLyy, [TLz)(see [17]).
In the space Ly;(Q2), we define the following two norms

[lullpr = inf{/\ >0: IQM(x, lu()\x)l)dx < 1},

which is called the Luxemburg norm, and the so-called
Orlicz norm by

ullla,q = SUP|y|lr<1 IQ u(x)v(x)ldx,

where M is the Musielak-Orlicz function complemen-
tary to M. These two norms are equivalent [17]. K((Q)
is a convex subset of Ly;(Q). The closure in Ly;(Q) of
the set of bounded measurable functions with com-
pact support in Q) is by denoted E;;(Q)). It is a sepa-
rable space and (Ep;(Q))* = Ly (Q)). We have E;(Q) =
K (Q), if and only if M satisfies the A,—condition for
large values of t or for all values of ¢, according to
whether Q has finite measure or not.

We define
WLy (Q)={u e Ly (Q): D%u € Ly(Q), Va<1),
WIEM(Q) = {u € Ep(Q): D%u € Ep(Q), Va <1},

where a = (ay,...,an)|a| = |ai| + ... + |ay| and D%u
denote the distributional derivatives. The space
WLy (Q) is called the Musielak-Orlicz-Sobolev space.
Let 0y 0(#) = Ljaj<1 om0 (D%u) and Jlully, o = inf(A >
0:0pqlf)<1}foruce WLy (Q).

These funct1onals are convex modular and a norm on
WLy (Q), respectively. Then pair (W!Ly(Q), ””“11\/10)
is a Banach space if M satisfies the following condition
(see [10]),

¢>0 suchthat infM(x,1)>

xeQ

There exists a constant

The space W!Ly(Q) is identified to a subspace of the
product IT,<; Ly (Q) =T1Ly,;. We denote by D(Q) the
Schwartz space of infinitely smooth functions with
compact support in Q and by D(Q) the restriction of
D(IR) on Q. The space WolLM(Q) is defined as the
o(ITLyy, ITEzy) closure of D(Q)) in WLy (Q) and the
space WO1 Ep(Q) as the(norm) closure of the Schwartz
space D(Q) in WLy (Q).

For two complementary Musielak-Orlicz functions M
and M, we have [17].

* The Young inequality:
st < M(x,s) +M(x, t)foralls,t >0,xeQ.

* The Holder inequality

| Jo ()| < lullv ol for all
u € Ly (Q),v € L7(Q).

We say that a sequence of functions u, converges to
u for the modular convergence in W!L(Q) (respec-
tively in WO1 Lp(Q)) if, for some A > 0.

lim pMQ(u”A_u):O.

n—o0

The following spaces of distributions will also be used

= {f IS D,(Q) i f = Z(—l)aDafa

a<l

WL(Q
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where f, € LM(Q)},

and

W Eg(Q) ={f eD(Q): f = ) (-1)*D*f,

a<l

where f, € EM(Q)}.

Lemma 1 [17] Let Q be a bounded Lipschitz domain in
RN and let M and M be two complementary Musielak-
Orlicz functions which satisfy the following conditions:

e There exists a constant ¢ > 0 such that
inf,cqg M(x,1) > ¢,

* There exists a constant A > 0 such that for all
x,9€Qwith |x—y| < %, we have

( A
log|

M(x, ) <t = forall t>1,
M(y,t)
* ForallyeQ, [, M(y,1)dx < co,
e There exists a constant C >0 such that
M(y, t)<C ae. in Q.

Under this assumptions D(Q) is dense in Ly;(()) with
respect to the modular topology, D(Q)) is dense in
WO1 Ly(Q)) for the modular convergence and D(Q) is
dense in WO1 Ly (Q) for the modular convergence.
Consequently, the action of a distribution S in in
WL37(Q) on an element u of W) Ly(Q) is well de-
fined. It will be denoted by < S,u >.

2.3 Truncation Operator

Ty, k > 0, denotes the truncation function at level k
defined on IR by Ty (r) = max(—k, min(k, 7)). The follow-
ing abstract lemmas will be applied to the truncation
operators.

Lemma 2 [12] Let F : IR — IR be uniformly lipschitzian,
with F(0) = 0. Let M be an Musielak-Orlicz func-
tion and let u € Wy Ly (Q)(resp.u € WLEp(Q)). Then
F(u) € WLy (Q)(resp.u € WOIEM(Q)). Moreover, if the
set of discontinuity points D of F’ is finite, then

d : F’(x)%
a—XZF(M)—{ 0 i

Lemma 3 Suppose that Q satisfies the segement prop-
erty and let u € WO1 Lyi(Q). Then, there exists a sequence
u, € D(Q) such that u,, — u for modular convergence in
WOILM(Q). Furthermore, if u € WolLM(Q) N L*®(Q) then
lunlloo < (N + D)ltt]|co-

a.e. in {x € Q; u(x) ¢ D}
a.e. in {x € Q; u(x) € D}
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Let Q) be an open subset of IRN and let M be a Musielak-
Orlicz function satisfying

1 as-1
Mz (t
J ’I‘\Hf)dt:oo ae. xeQ,
0 t N

(2)

and the conditions of Lemma (I). We may assume
without loss of generality that

1 _
M(t)
N+1
0 t N

dt<oco ae. xeQ.

(3)

Define a function M* : Q x [0,00) by M*(x,s) =
-1
Is M Wit xeQandse [0, 00).

+1
OtN

M?* its called the Sobolev conjugate function of M (see
[18] for the case of Orlicz function).

Theorem 1 Let Q) be a bounded Lipschitz domain and
let M be a Musielak-Orlicz function satisfying (2),(3) and
the conditions of lemma (1). Then WolLM(Q) — Ly (Q),
where M* is the Sobolev conjugate function of M. More-
over, if @ is any Musielak-Orlicz function increasing essen-
tially more slowly than M* near infinity, then the imbed-
ding WOILM(Q) < L(Q), is compact.

Corollaire 1 Under the same assumptions of theorem ,
we have WO1 Ly (Q) > Ly (Q).

Lemma 4 If a sequence u,, € Ly (Q) converges a.e. to u
and if u, remains bounded in Ly;(Q)), then u € Ly (Q)
and u, — u for o(Lp(Q), Ez7(Q)).

Lemma5 Let u,u € Ly(Q). If u, — u with re-
spect to the modular convergence, then u, — u for
o (L (Q), Ly (Q)).

Démonstration: Let A > 0 such that IQ M(x, “”/\_” )dx —
0. Thus, for a subsequence, u,, — u a.e. in Q. Take
v € L7(Q)). Multiplying v by a suitable constant, we
can assume Av € L3;(Q)). By Young’s inequality,

U, —u

(14, — v < M(x, )+ M(x, Av)

which implies, by Vitali’s theorem, that IQI(un -
u)vldx — 0.

2.4 Inhomogeneous Musielak-Orlicz-
Sobolev spaces

Let Q an bounded open subset IR and let Qr =
Qx]0, T[ with some given T > 0. Let M be an Musielak-
Orlicz function, for each a € INN, denote by V¢ the
distributional derivative on Q7 of order a with respect
to the variable x € INV. The inhomogeneous Musielak-
Orlicz-Sobolev spaces are defined as follows,

WY Ly(Qr) = {u € Ly (Qr) : Viu € Ly (Qr),
Ya e INVN,|a| < 1},

W Ep(Qr) = {u € Epf(Qr) : Viu € Ep(Qr),
Ya e NV, |al < 1).
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The last space is a subspace of the first one, and
both are Banach spaces under the norm |lu|| =
Yiajem IV ttllvr, 0, - We can easily show that they form
a complementary system when () satisfies the Lips-
chitz domain [17]. These spaces are considered as sub-
spaces of the product space I'1Ly;(Qr) which have as
many copies as there is a-order derivatives,|a| < 1. We
shall also consider the weak topologies o (I1Lyy, T1Ez;)
and o(I1Lyg, TLyp). If u € WY*Ly(Qr) then the func-
tion : t — u(t) = u(t,.) is defined on (0,T) with val-
ues WLy (Q). If, further, u € W'*E,(Qr) then
the concerned function is a W'*E,((Q)-valued and
is strongly measurable. Furthermore the following
imbedding holds W"*E;(Q) c L1(0, T, WI¥Ep (Q)).
The space W'*Ly;(Qr) is not in general separa-
ble, if W'"*Ly;(Qr), we can not conclude that the
function u(t) is measurable on (0,T). However,the
scalar function t — [lu(t)llpq, is in L'(0,T) .The
space Wol’xEM(QT) is defined as the (norm) closure
WU Eyi(Qr) of D(Qr). We can easily show as in
[8],that when Q has the segment property, then
each element u of the closure of D(Qr) with respect
of the weak* topology o(IlLy,I1Ez;) is a limit, in
WOI’XEM(QT), of some subsequence (u;) C D(Qr) for
the modular convergence; i.e. there exists A >0 such
that for all |a| < 1

M(x, Vgui —V,‘?u
Qr

Jdxdt - 0 asi — oo.

(4)

This implies that (1;) converge to u in WY*Ly(Qr) for
the weak topology o (I1Ly, I1L77) .
Consequently,

D(Qr)

Do (5)

This space will be denoted by Wol‘xLM(QT) . Furthermore,

Wy Eni(Qr) = Wy Lg(Qr) NTIE .

We have the following complementary system
W§'XLM(QT) F
Wy Em(Qr) Fo

WOI’XEM(QT). It is also, except for an isomorphism, the

quotient of I1L;; by the polar set Wol’XEM(QT)L, and

will be denoted by F = W’LXLM(QT) and it is show
that,

) F being the dual space of

W L {

ZV"‘fa.

la|<1

fa € LM(QT)}

This space will be equipped with the usual quo-
tient norm [|f|| = inf} ;<1 lfallzz,o, Where the infi-
mum is taken on all possible decompositions f =

Z|a|§1 nga' fa € LM(QT)-

The space F; is then given by, F( = {f =Yt Vifa:
fa € EM(QT)} and is denoted by Fy = W~"*E++ (QT)-

Theorem 2 [14] Let Q) be a bounded Lipchitz domain
and let M be a Musielak-Orlicz function satisfying the

www.astesj.com

Then there exists
YV €

same conditions of Theorem (1.
a constant A > 0 such that ||lullpy < MIVulla,

Wy Lot (Qr).

Definition 1 We say that u, — u in W‘LXLM(QT) +
LY(Qr) for the modular convergence if we can write
Uy =Y a1 DEuG +u and u =Y, DFu® +u°

with u§ — u® in Ly(Qr) for modular convergence for all
la| < 1 and ul — u%lstrongly in LY(Qr)

Lemma 6 Let {u,} be a bounded sequence in
WYLy (Qr) such that a”” =a,+p,inD(Qr), u
u, weaklyin WU XLM(QT), for o (I1Ly;, T1Ez;)

with {a,} and {B,,} two bounded sequences respectively
in W-Y*Ls=(Qr) and in M(Qt). Then
U, —> uin LllOC(QT). Furthermore, if u, € Wol’xLM(QT),
then u,, — u strongly in L'(Qr).

Theorem 3 if u € WLy (Qr) N LY(Qp) (resp.
Wo™Lu(Qr)NL!(Qr)) and % € W™ Lyz(Qr)+L" (Qr)
then there exists a sequence (vj) in D(Qr) (resp.
D(I,D(Qr))) such that v; — u in W' Ly(Qr) and

% 9 iy WL (Qr) + LY(Qp) for the modular

convergence.

Démonstration: Let u € WYLy (Qr) N LY(Qr) and
% € W‘l"‘LM(QT) +L'(Qr), then for any € > 0. Writ-
ing %—’; =Y jaj<1 DY u® + u%, where u® € L37(Qr) for all
la| <1 and u® € L'(Qr), we will show that there exits
A > 0 (depending Only on u and N) and there exists
v € D(Qr) for which we can write %—1: =Y ja1<1 DEv*+0°

with v%,v% € D(Q7) such that

D¢v—-Dg
M(x, 22"y avdt < eVlal<1,  (6)
Qr
lv—ullpig) <e (7)
||V0—M0||L1(QT) <e (8)
A Th
M(x, ydxdt <e,Vla| <1 (9)
Qr

The equation (6) flows from a slight adaptation
of the arguments [17],The equations (7),(8) flows also
from classical approximation results. For The equa-
tion (9) we know that D(Qr) is dense in Ly;(Qr)
for the modular convergence. The case where u €
Wol’xLM(QT) N LY(Qr)) can be handled similarly with-
out essential difficulty as it mentioned [17].

Remark 2 The assumption u € L'(Qr) in theorem (3)) is
needed only when Qr has infinite measure, since else, we

have Ly (Qr)) € LY(Qr) and so WLy (Qr)NL (Qr) =
WXLy (Qr).

Remark 3 If in the statement of theorem (3)) above, one
takes I = IR, we have that D(Q x IR) is dense in {u €

Wy Ly(Q x IR)NL'Q x IR) : 94 € W L3-(Q x IR) +
LY(Q x IR)} for the modular convergence This trivially
follows from the fact that D(IR, D(Q)) = D(Q x IR).
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Remark 4 Let a <b € IR and Q) be a bounded open subset
of IRN with the segment property, then {u € WOI’XLM(Q X
(@,b)NL'Qx(a,b) : - € WILyz(Q x (a,b)) + L} (Q x
(a,0))} cC([a, 0], L1(Q

Démonstration: Let u € Wol’xLM(Q x (a,b)) and %—”t’ €
WA L(Q x (a,b)) + LYQ x (a, ).

After two consecutive reflections first with respect
to t = b and then with respect to t = a, i(x,t) =
u(x%, )X () +u(x,2b=t)x(p,20-0) in Qx(b,2b—a)and
i(x, t) = ﬁ(xx t)X(a,Zb—a) +1(x,2a - t)X(3u—2b,a) in Qx
(3a—2b,2b —a). We get function if € Wol’xLM(Q x (3a-
2b,2b - a)) with 2 € W Li(Q x (32— 2b,2b — a)) +
LY(Q x (3a - 2b,2b —a)). Now by letting a function 7 €
D(IR) with =1 on [a,b] and suppn C (3a—2b,2b—a),
we set U = nil, therefore,by standard arguments (see
[19]), we have & = u on (Q x (a,b)), @ € W, Ly (Q x
R)NLY(Qx IR) and 2£ € W, " Lyr(Q x IR) + L! (Qle)

Let now v; the sequence given by theorem (3) corre-
sponding to u, that is,

vi—>u in Wy Ly(QxR)

and
ov; I
8_t] N % in Wy Ly (Q x R) + LY (Q x IR)

for the modular convergence
If we denote Si(s) Jo Ti(t)dt the primitive of Ty.

i
\g\fe have, JQ S1(v; —vj)(r)dx = JQ Loo Ty (vi —vj) (5 -
%)dxdt -0 as i,j — 0, from which, one de-
duces that v; is a Cauchy sequence in C(IR; L1 (Q)))

and hence u € C(IR,LY(Q)).
C([a; b];L1(Q2)).

Consequently, u €

3 Formulation of the problem and
main results

Let Q be an open subset of RN (N > 2) satisfying the
segment property,and let M and P be two Musielak-
Orlicz functions such that M and its complementary
M satisfies conditions of Lemma |1} M is decreasing in
xand P << M.

b:Q xIR — IR is a Carathéodory function such that
for every, x € Q, b(x,.) is a strictly increasing CY(IR)-
function and

beL®(QxR) with b(x,0)=0, (10)

There exists a constant A > 0 and functions A € L*(Q))
and B € Ly;(Q) such that

db(x,s)
ds

db(x,s)
A< ds

a.e.erandV|5|elR
A : D(A) ¢ WyLy(Qr) » W 'Liz(Qr) defined by
A(u) = —div a(x,t u,Vu), where a : QTleleN — IRN

<A(x) and vx( )|§B(x) (11)

www.astesj.com

is caratheodory function such that for a.e. x € Q and
forall s € IR,E, & € RN, & = &*

lax,t,5,&)| < viag(x, 1)+ M, P(xls),  (12)

with ag(.,.) € Ezr(Qr),
(alx, b5, 8) —alx,t,5,EN)(E-E)>0,  (13)
alx,,5,6). > aM(x, [E) + M(xls)..  (14)

®D(x,5,&): Qr x Rx RN — RN is a Carathéodory func-
tion such that

D (x,t,5)] < c(x, )M, M(x, aols)), (15)
where c(.,.) € L*(Qr7), lle(, lr(op) < @, and
0<ap< min(l,é).
H(x,t,5,&): Qr X IR x RN S Risa Carathéodory func-
tion such that

|H(X, t,S,cE)l < h(xlf)+P(5)M(x»|<f|)» (16)

p : IR — IR* is continuous positive function which be-
long L!(IR) and K(.,.) belong L!(Q7).

fell(Q), (17)

and

uy € LY (Q) such that b(x,ug) € L'(Q).  (18)

Note that <,> means for either the pairing between
W, "L (Qr) N L=(Qr)) and W Lyz(Qr) + L' (Qr) or
between Wol‘XLM(QT) and W’LXLM(QT).

Weak entropy solution: The definition of a entropy
solution of Problem can be stated as follows,

Definition 2 A measurable function u defined on Qr is a
entropy solution of Problem (1), if it satisfies the following
conditions:

b(x,u) € L®(0, T; LY (Q)), b(x, u)(t = 0) = b(x,uy) in Q,
Ti(u) € Wy "Ly (Qr), Vk>0, Vtelo,T],
Jo (35 i 227 1z
ok ‘%("”Tk( v(0))dsdx
+JZ (u Vu)VTi(u— vdxds+fQ u)VTi(u —v)dxds

+jQ

(u, Vu)Ti(u —v dxds<f ka u—v)dxds

Vk>0, and VYveWl xLM(QT) NL®(Qr) with
v(T)=0, suchthat %*e W "*Ly(Qr)+L (Qr)
(19)
Theorem 4 Assume that - hold true . Then

there exists at least one solution u of the following problem

9.

113


http://www.astesj.com

M. Elmassoudi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 5, 109-123
(2017)

4 Proof of theorem

Truncated problem.
For each n > 0, we define the following approximations

b, (x,s) =b(x, T,(s)) + % s VrelR, (20)

a,(x,t,s,&)=a(x,t,T,(s),&) ae. (x
VselR ¥V &elRN,

t)eQr, (21)

D, (x,t,5) =D(x,t,T,(s)) ae.(x,t)eQr, VselR,
(22)
Hy(x, 1,5, &) = — 0 b5:E) (23)

1+%|H(x,t,s,é)|’
fu € L'(Qr) such that fu — f strongly in LY(Qr), (24)
and || fullzr o,y < flliL )

and
ug, € Cy°(Q)such that b, (x, ug,) — b(x, ug) (25)
strongly in L}(Q).
Let us now consider the approximate problem :
b, (x, . .
9bu(%,ttn) _ div(a,(x,t,u,, Vu,)) — div(®,(x, t,u,))
+H,(x,u,, Vu,) = f, in Qr,
u,(x,t)=0 on JQx(0,T),
b(x,u,)(t=0)=0b,(x,uy,) in Q.
(26)

Since H,, is bounded for any fixed n > 0, there exists at
last one solution u,, € Wol'xLM(QT) of (26)(see [20]).

Remark 5 the explicit dependence in x and t of the func-
tions a, ® and H will be omitted so that a(x,t,u,Vu) =
a(u,Vu), ©(x,t,u) = D(u) and H(x,t,u,Vu) = H(u, Vu).

Proposition 1 let u, be a solution of approximate equa-
tion (26)such that

Ti(un) = Ti(u)  weakly in - W'*Ly(Qr),
u, > u ae in Qr,
b,(x,u,) > b(x,u) ae. in Qr and b(x,u)e

a(Tie(up), V(1)) VT (1) = a(Tie(ut), VT (e ))VTk( u)
weakly in  L'(Qr),

Vu, - Vu ae. in Qr,

H,(u,,Vu,) — H(u,Vu) stronglyin L'(Qr).

(27)
then u be a solution of problem (19).

Démonstration: Letv € WolLM(QT) NL*®(Qr) such that
% € W Lyz(Qr) + L' (Qr) with v(T) = 0, then by the-
orem we cantakev=v on Qr,ve WLy (Q x
R)NLYHQxR)NL®(QxIR), 2 € W *Liz(Qr)+L1(Qr),
and there exists v; € D(Q x IR) such that v;(T) = 0,
in Wy Ly(Qx IR) and

U]' -V
ov; ov
L= S e W LyQn+LQr),  (28)

for the modular convergence in WolLM(QT), with
jllee(or) < (N + 2)l[wlle=(p)-

www.astesj.com

Pointwise multiplication of the approximate equation

by Ti(u, —v;), we get

T 9b,(x,u,)
JO <T;Tk(

+JQT a, (U, Vi, )VTi(
un)VTk(

+ D,,(
Qr

+jQT H,y(ty, Vi)V Ty (1, — v)dxds

= IQT fuTi(uy —vj)dxds

We pass to the limit as in (29), # tend to +co and j
tend to +oo:
Limit of the first term of :
The first term can be written

ab?l (x’ uﬂ)

T
J;< ds

U, —vj)>ds
uy —vj)dxds

u, —vj)dxds (29)

3 Te(uy —vj) > ds

T 9v (" 9b,(x,2)
:L <8_s'_£) 3 T/(z —vj)>ds
J J Qb,, k(s—vj(T))dsdx
Uon
—f J ab” (%) v;(0))dsdx,

the fact that ( s) >0 and v]( )=0, we get

[ J
L

On the other hand, we have u,, converge to ug strongly
in L'(Q), then

oy db,,
lim,, 0 IQ o (;

- f J”OMTk(S_

vi(T))dsdx =

k(s)dsdx >0

VT (s —v;(0))dsdx

v;(0))dsdx,

Q\'gv)lth M = k+(N+2)||v|l and Tys(u,) converges to Ty, (1)

strongly in Ej;(Q7), we obtain

T 8v “n 9b,(x,2)
. ] n\*s» ’ .
nl—lgloo 0 at J- ds Tk (== v])dz > ds
T 9 Ta(uy)
= liIP ;S j %Tk’(z—vj)dz>ds
n—+oo 0
T dvj (™ gb(x,2)
_J; < == N J o T (z— vj)dz > ds,
then
T Iv; Tp () ab(x,Z)T, Py
L <= s J 3 p(z—v;)dz>ds
T
< lim <MTk(un—v )>ds

T n—o+oco ds

ks

ab

Ti(s —vj(0)) > dsdx,
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using , the definition of T; and pass to limit as
j — 400, we deduce
J‘T v J‘TW) Ib(x,z)
<=
o 95’ Jp ds
T 9b(x,u,)

< lim lim <
j—+oo n—+00 85

0
o Jb(x,t)
+ <
J-QJ:) ds

* We can follow same way in [21]to prove that

T/ (z—v)dz>ds

Ti(uy —vj) > ds

Ti(s —v(0)) > dsdx.

]'_>oo n—oo

liminflim inff a(uy, Vi)V Ty (1), — vj)dxds
Qr

> J‘ a(u, Vu)VTi(u —v)dxds.
Qr

* For n>k+ (N +2)|vllre(op) Pn(tn)VTi(u, —v)) =
QT+ (N+2)|llioo o) (#n))V Tk (1y = vj). The point-
wise convergence of u,, to u as n tends to +co and
(15), then QT+ (N+2)llell oo (4n))V Tie (14 = vj) =
CD(TkJr(NJrz)”v”Lm(QT)(u))VTk(u - vj) weakly for
o (TTLyy, TTL7z).

In a similar way, we obtain

].li_f{)lo 0 D(Tier (N+2) ol o) (1)) V Ti (1 = vj)dxdss
T

= J Q(Ts(N+2)llellgoo o) (4D V Tic(u —v)d xds

Qr

= f O(u)VTi(u —v)dxds.
Qr

* Limit of H,(uy, Vu,) T (1, —v)):
Since H,(u,,Vu,) converge strongly to
H(x,s,u,Vu) in L'(Qr) and the pointwise
convergence of u, to u as n — +oco, it is
possible to prove that H,(u,, Vu,)Ti(u, — v;)
converge to H(u,Vu)Ty(u — v;) in L'(Qr)

limj_monTH(u,Vu)Tk(u - vj)dxds =

-[QT H(u,Vu)Ty(u —v)dxds.

and

* Since f, converge strongly to f in L'(Qr) , and

Ti(uy —vj) = Ti(u, —vj) weakly* in L*(Qr), we

JuTk(uy—vj)dxds — fTi(u—vj)dxds
Qr

have
Qr

as 1 — oo and also we have

fTi(u - vj)dxds —
JQr
] — 0
Finally, the above convergence result, we are in
a position to pass to the limit as n tends to +oo
in equation and to conclude that u satisfies

).

It remains to show that b(x,u) satisfies the ini-
tial condition. In fact, remark that, Bps(x,u,) =

Up
f 8b(a’;’s)TM(5 —v)ds is bounded in L®(Qr). Sec-
0

ondly, by we show that W

fTi(u —v)dxds as
Qr

is bounded in
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W‘LXLM(QT)) +LY(Qr). As a consequence, a Lemma

implies that Bp;(x,u,) lies in a compact set of

Co[0,T;LY(Q)) . It follows that, Bys(x,u,)(t = 0)
converges to By(x,u)(t = 0) strongly in L'(Q). On
the order hand, the smoothness of By, imply that
Bp(x,u,)(t = 0) converges to By(x, u)(t = 0) strongly in
L'(Q), we conclude that By(x,u,)(t = 0) = Bys(x, 1g,,)
converges to By(x,u)(t = 0) strongly in L}(Q), we
obtain By(x,u)(t = 0) = Bpys(x,ug) a.e. in Q and for
all M > 0, now letting M to +oo, we conclude that
b(x,u)(t =0)=0b(x,up) a.e. in Q.

Remark 6 We focus our work to show the conditions of
the proposition then for this we go through 4 steps to
arrive at our result.

Step 1: In this step let us begin by showing

Lemma 7

Let {u,}, be a solution of the approximate problem (26),
then for all k > 0, there exists a constants Cy and C, such
that

f a(Ty(uy,), VT (1)) VT (uy,)dxdt < kCq, (30)
Qr

and

M(x,|VTi(u,))dxdt < kC,,
Qr

where Cy and C, does not depend on the n and k.

(31)

Démonstration: Fixed k > 0,
Let 7 € (0,T) and using exp(G(u,)) T(u,)" X(0,7) as a
test function in problem (26)), where

G(s) = r p(r)

7

dr and a’ > 0 is a parameter to be speci-

0
fied later, we get:

[ Pubo),
Js p

T

(G(1n)) Te(un)" X 0,0ydxdt  (32)

7

+J a(un,Vun)p(::”)exp(G(un))VunTk(un)+dxdt

T

(33)
+—[ a(uy,, Vu,)exp(G(u,))VTi(u,)dxdt  (34)
{0<u, <k}
+J D, (1) V( exp(G(u,)) Ti(u,) )dxdt  (35)
+f H(1ty, Vity) exp(Glu,) Te(uw,) dxdt  (36)
llpllr:
< kexp( p Mfalletq)- (37)
For the (32), we have
[ ) el i) 0t
Q, s
=f Bn,k<x,un<r>>dx—f B (5, 4 (0))dx,
Q Q
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where

"db,(x,s
o) = [ 2 exp(GUI T ds
0
By (11), we have JQ By k(x,1u,(7))dx > 0 and

J Bkt () < kexp 1L, gl

T

For the (35), if we use and Young inequality , we
get

f D, 1))V (exp(G16) Te 1) )t <

T

lle(, )z (0r)
I : [ao
a Q:

+ M(x:V”n)P(”n)eXP(G(”n))Tk(un)+

dxd
o xt]

Hle( M (op) @0 J-Q M(x,u,)exp(G(u,))dxdt

+||c<.,.>||Lm<QT)jQ M (19 T (1)) exp(Gut)dxd.

which becomes after simplification,

[ L= aglle(, re(or)
a’ Q.
|| oo

s Nen =y -y

+f (it Vity) exp(G{1ty)) VT ()" dxdlt

a—||c(.,.
(x, Vuy,)

||Q(T )i

cl.,. L®(Q7)

< = =T

= P [ao
+aM(x, VTi(

af M(x,u,)exp(G(u,))dxdt
{0<u, <k}
u,)t)exp(G(u,))dxdt]+ kC.

(39)
If we choose a’ such that a’ < a —lc(.,.)||r=(g,) and

using again in we get
lle(., )||L°° (Qr)

(40)
we deduce,

j a(u,, Vu,)exp(G(u,)) VT (u,)dxdt < ke;.
{0<u, <k}

one has exp(G(u,
then

)) > 1 forin {(x,t) € Qr : 0 < u, < k}

j alu,, Vu, )VTi(u,)dxdt < kc;. (41)
{0<u, <k}

and by another again

For the (36), we have, M(x, VT (1, )dxdt < ke, (42)
Q:
H, (u,,Vu,)exp(G(u,)) T (u,) dxdt
Q: i Vitn) eXP(Gn) Te(1tn) Similarly, taking exp(—=G(u,,) Ti(4,)” X(0,7) as a test
function in problem , we get
llpll:
b, (x,
< kexp( o )JQT Ih(x, )ldxdt J- —”gxt i) exp(=G(uy)) Ti(u,) dxdt (43)
Q:
+f (1) exP(G(14,))M(x, VT (1) Te(uy) dxdt. JQ an{it VitV (XP(=G )]V Ty (1))t (44)
Q¢ ‘
finally using the previous inequalities and (14), we +J D@y, (1 )V(exp(=G(uy))VT(uy)")dxdt  (45)
obtain Qe
1 ||, Vi) exp(-Glu ) Ty ) dxds (36)
_, M(x’ un)p(un)eXP(G(”n))Tk(un)+dxdt Qu
o M3 Vit )l exp(Glit) Ty )l ZL foexp(-Glu, ) Teluy) dxdt.  (47)
+ a(u,, Vu,)exp(G(u,))V Ty (u,) " dxdt and using same techniques above, we obtain
Q
< e ”Lw RO | fQ (%, u,)p(uy,) exp(Gluy,)) Ty (1) Fdxdt J a(ty, Vi, )VTi(u,)dxdt < ke;. (48)
{—k<u,<0}
f M(x, Vit )p (1) exp(G(uy)) Ty (uy) dxd] since exp(—G(u,)) > 1 in {(x,t) € Qr : =k < u,, < 0}
and
+a0||c('r')”L“(QT)J;OSIMSHM(X! un)exp(G(un))dxdt M(X, |VTk(un)_|)dxdt < kC2. (49)
Qr
el Mroor) | M(x, VTi(un)") exp(Gluy))dxdt Combining now (41)) and (48) we get,
-, M Vaotu) (G, Ty [ atuegviwpasar <ic,, G0
+k[ex (||P61|L ||f||L (o)t llb(x, 140||L1 in the same with and we get,
+f h(x,t)|dxdt],
Qr M(x,|VTi(u,))dxdt < kC,. (51)
(38) Q.
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] M(x:un)P(”n)eXP(G(”n))Tk(un)erth

) exp(G (i) Tie(uy)* dxdt

M(x,un)p(un)exp(c(un))Tk(un)uxd@ Y ] o a(ut,y, Vie,) exp(G(u,))\V (1) dxdt < kC.


http://www.astesj.com

M. Elmassoudi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 5, 109-123
(2017)

we conclude that Ty (u,,) is bounded in Wol’XLM(QT)
independently of n, and for any k > 0, so there exists a
subsequence still denoted by u,, such that

Te(ty) = & W, Lu(Qr)-
On the other hand, using , we have

weakly in (52)

T,
M(x,k)meas{lun| >k} < j M(x, | k(“n)l)d it
0 |y, |>k}

< M(x, |VT(u,))dxdt < kC,,
Qr
then ‘C
meas{|u,| >k} < —zk,
X, 5)

for all n and for all k.
Assuming that there exists a positive function M such

that lim;_,, —~ M(t) = 400 and M(t) < essinf,cq M(x, 1),
YVt > 0. thus, we get

klim meas{|u,| >k} =0
Now we turn to prove the almost every convergence
of u , b,(x,u,) and a,(x,t, Tr(u,), VT (uy)).

Proposition 2 Let u, be a solution of the approximate
problem, then

u, > u aein Qr, (53)
b,(x,u,) > b(x,u) aein Qr and
b(x,u) e L*(0,T,LY(Q)), (54)
ay(Te(), V() = @ in (Lyg(Qr)N,  (55)
for  o(ITLz5, I1E ),
for some @y € (LM(QT))N.
Démonstration: :
Proof of and (54):

Proceeding as in [22], we have for any S € W>®(IR),
such that S’, has a compact support
(suppS’ c [-K,K]).

Bl (x,u,) isboundedin W, Ly(Qr), (56)
and
OB5(0 ) i bounded in L1 L
— 5, Isboundedin (Qr)+ W Q1)

(57)

independently of n.
Indeed, we have first
[VBG (x, )| < | Ak llzoo ()| D Tic(un IS Nl oo () + KIS Moo ()

(58)

a.e.in  Qr.

As a consequence of and we then obtain (56).
To show that . 7) holds true, we multiply the equation

(26) by S’(u,), to obtain
IBg(x, uy) o, ,
T =div(S (un)an(unrvun))_s (un)an(unrvun)vun

(59)
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+div(s’(un)<pn(un)) - S”(un)q)n(un)vun

+Hn(un’vun)s Uy +fn (1)

where B (x,r f S’( s. Since suppS’ and
suppS” are both 1nc1uded in [-K,K], u, may be re-
placed by Ti(u,) in each of these terms. As a conse-
quence, each term in the right hand side of is
bounded either in W™*L3+(Qr) or in L}(Qr) which
shows that holds true.

Arguing again as in [22] estimates (56), (57) and the
following remark (1)), we can show and (54).

in  D(Qr).

abxsd

Proof of :
The same way in [15], we deduce that
a,(Ty(u,), VIi(u,)) is a bounded sequence in

(LM(QT))N, and we obtain (55).
Step 2: This technical lemma will help us in the step
3 of the demonstration,

Lemma 8 If the subsequence u,, satisfies (26)), then

lim lim supj a(uy,, Vu,)Vu,dxdt = 0.
{m<uy|<m+1}

M=+00 400
(60)

Démonstration: Taking the function Z,,(u,) =Ty (u, —
T,,(u,))” and multiplying the approximating equation
by the test function exp(-G(u,,))Z,,(u,) we get

Jo, B, (T))dx

+Jo, an(unfvun) (exp(=G(uy)) Z(uy))dx dt
+JQ V(exp(—=G(u,))Z,,(u,))dx dt
+j H un,Vu Jexp(—G(uy,))Z,,(u,)dxdt

JQTfnexp ~G(1)) Zn(1t) dx dt + [, Byy(x, tgy)dx
(61)

T bu(%5) (- GUs)) 2y (5)ds.

here B ,7) = L
where B, ,,,(x,7) J; s

Using the same argument in step 2, we obtain

M(x,|VZ,,(u,)))dxdt < C(J |h(x, )| Z, (1, )dxd t
Qr Qr
f,, (u,)dxdt +J |b,,(x, ug,)|dx).
[ugul>m
where
||P||L 44
C = exp( )

).
a—le( (g

Bifasking to limit as n — +oo, since the pointwise conver-

gence of u, and strongly convergence in L!(Qr) of f,
and b, (x, up,) we get

lim u)dxdt
n—+oo QT

M(x,|VZ,,(u,))dxdt < C( fZ

+J |h(x, t)|Zm(u)dxdt+f |b(x, ug)|dx).
Qr {lug>m}
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By using Lebesgue’s theorem and passing to limit
as m — +oo, in the all term of the right-hand side, we
get

lim lim | M(x|VZ,(u,))dxdt =0,

m—+00 n—>+0o QT

On the other hand, by and Young inequality,for
n>m+ 1 we obtain
'[QT |(Dn(xl £, ”n) exp(_G(un))vzm(un)ldx dt

(62)

lpllz:
<exp("ERLLy[ M (%, | Ty 1 (1)) dxdt
a {—(m+1)<u, <—m}

+ M(x,|VZ,,(u,,)|)dxdt].
Qr
Using the pointwise convergence of u, and by

Lebesgues theorem, it follows,
1imn—>+oo JQT |(I)n(un) exp(_G(un))VZm(un)Idx dt

<exp(l21LLy( [ M ol Tyss (1))l
a {=(m+1)<u<-m}

+ lim M(x,|VZ,,(u,)|)dxdt]

n—-+oo
Qr

passing to the limit in as m — +co, we get

lim lim D, (uy,)exp(—-G(uy,))\VZ,,(u,)dxdt = 0.
m—+00 n—+00 Qr
Finally passing to the limit in (61), we get

lim lim
mM—+00 H—>+00

a,(u,, Vu,)Vu,dxdt =0,

{—(m+1)<u,<-m}

In the same way we take Z,,(u,,) = Ty (4, — T,,,(14,,))" and
multiplying the approximating equation by the
test function exp(G(u,))Z,,(u,) and we also obtain

lim lim
m—+00 n—>+00

a,(u,, Vu,)Vu,dxdt =0,

{m<u,<m+1}

on the above we get (60).
Step 3: Almost everywhere convergence of the gra-
dients.

This step is devoted to introduce a time regulariza-
tion of the Ti(u) for k > 0 in order to perform the
monotonicity method.

Lemma 9 (See [23]) Under assumptions (11)-(18), and
let (z,) be a sequence in Wol'xLM(QT) such that:

o (ITLp (Qr), TTEx(Qr)),

(a(x,t,2,,Vz,)) isbounded in (LM(QT))N,

z,—z for (63)

(64)

la(x,t,2,,Vz,)-a(x, t,2,,Vzx,)][Vz,~Vzx,]
Qr
(65)

as n and s tend to +oo, and where x is the characteristic
function of Q; = {(x,t) € Qr;|Vz| < s} then,

Vz, —>Vz a.e inQrp, (66)
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lim
n—+oo QT

a(x,t,z,,Vz,)Vz,dxdt = J
Qr

M(x,|Vz,|) = M(x,|Vz|) in LY(Qr).

Let v; € D(Qr) be a sequence such that v; — u in
WOI’XLM(QT) for the modular convergence.

This specific time regularization of T (v;) (for fixed
k> 0) is defined as follows.

Let (ag)ﬂ be a sequence of functions defined on Q) such
that

ah e L®(Q)NW]Ly(Q) forall p>0,  (69)

||a%||Loo a) <k, for all >0,
0llL=(Q) I

and ag converges to Ti(ug) a.e. in (O and ’%llagHMQ
converges to 0 as y — +oo.

For k > 0 and u > 0, let us consider the unique solu-
tion (Ty(v))), € LM(QT)OWOLXLM(QT) of the monotone
problem:

AT (v;
% + p((Te(v)) — Te(vj)) = 0in D'(Q),

(Te(v)))u(t =0) = afy in Q.
Remark that due to

(Ti(v;) )
— L e Wi Lu(Qr ).

We just recall that, (Ti(v;)) a.e.

weakly-+in L®(Qr),

(Te(v), — (Ti(w)), in Wy Ly(Qr) for the
modular convergence as j — +oco and
(Te(u)y = Ti(u) in Wol’xLM(QT), for the modular
convergence as p — +0oo.

M - Tk(u) in QT;

(T () lle=(0g) < max(l(Te())llze (@) lah () <k,

YV u>0,Y k>0.
We introduce a sequence of increasing C! (IR)-functions
S,, such that S,,(r)=1 for |r|<m, S,(r)=m+1-
|r, for m<lr|l<m+1, S, (r)=0 for |r|>m+1
for any m > 1 and we denote by e(n, y, 7, j, m) the quan-
tities such that

lim lim lim lim lim e(np,1,j,m)=0,

m—>+ooj_>+oo 1—+00 p—+00 H—+00

dxdt — 0, the main estimate is

For fixed k>0, let Wit = Ty (Ti(un) = Te(v;),) " and
Wiy = T (Ti(1) = Te(v;),)"
Multiplying the approximating by
exp(G(un)))W,Z',; Sm(u,) and using the same technique
in step 2 we obtain:

equation
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% Démonstration: We adopt the same technics in the
Me D(G(14)) Wy S (14 dx dt proof in [8].
Q ot Proof of (72): If we take n > m + 1, we get
f (10, V11,) exp(Gu,))V( Wy Sty dxdt - Pu1tn) exp(G (1)) S (10) =
Qr
; O(T, u,))exp(G(T, uy))Sm(Tor1 (1)),
+J (14, Vit Vit exp(Glu ))W,Z’,;S,'n(un)dxdt (T1 (1)) exp(G(T1 (1)) S (Tg1 (14))
Qr . then @, (u,)exp(G(u,))S,,(u,) is bounded in L3;(Q),
D, (u,) exp(G(u ))V(W,Z’,;)Sm(un)dxdt thus, by using the pointwise convergence of u, and

Qr
|, ot Viep Gl W )
T .
< JQ Fuexp(G(1,)) Wy S (11,) dx dt
+jQ t)exp(G () Wy Sy (1) dx dt.
(70)
Now we pass to the limit in for k real number
fixed.

In order to perform this task we prove below the fol-
lowing results for any fixed k > 0:

Jo

Iy, (x, 1)

ot eXp(G(Mn))W/Z;;Sm(un)dthZe(n'ﬂ'rl’j)

(71)
forany m>1,

fQ D (1)Som 1) exp(Glun))V(WIE) dxdt = (. )

(72)
forany m > 1,

fQ D, (1) V111 1) exp(Glit)) Wi dxdt = e, 1)
T

(73)
forany m>1,

LTa,,(un,Vu,,)wns;n(u,,)exp(c(un))w,ﬁ’,;dxdt (74)
<e(n,m),
fQTanwn,Vun>sm<un)exp(G(un»ww,Z;;')dxdt (75)
<Cn+e(nj,pum),

fn m(t,)exp(G (un))w;l,'p;dxdt

+j h(x, t)exp(Glu)) Wi Sty dxdt — (76)
Qr

<Cn+e(nn),

o [a(Tk(un)fVTk(un))_a(x! t Tk(un)rVTk(u))] (77)
T
X[VTi(uy,) = VTi(u)]dxdt — 0.
Proof of :
Lemma 10
3bn X, Uy n,j .

|, G exp(Gl Wi > et .

' (78)
m>1.
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Lebesgue’s theorem we obtain
@, (uy,) exp(G(uy)) S (1ty) — (1) exp(G(u))S,, (1),

with the modular convergence as n — +oo, then

D@y, (1) exp(G(14y)) S (1) — P (1) exp(G(u))Sy,(u) for

o (ITLg5, ITLyy).

On the other hand VW;Z’,JI =

V(T (vj), for [Ti(u,) — (Ti(

VTi(u) — V(Tk(vj)), weakly .(LM(QT))N;
Jo, () exp(G(14,))S 5 (14,)V Wy dx dt

jQTcp(u)sm( )exp(G(u ))VW,ﬂ,dedt, as 1 — +oo.

VTk(un) -
vi))ul < 1 converge
to in

then N

using the modular convergence of W

1]
letting p tends to infinity, we get .

as j — +oo and

Proofof.' For n > m + 1 > k,
we have Vu,S,(u,) = VT,(u,) ae. in
Qr. By the almost every where conver-
gence of u, we have exp(G(un))W:",; -
exp(G(u ))Wlﬂn in L®(Qr) weak-* and since the
sequence (P, (T,p41(uy)))y converge strongly in
Exf(Qr)  then  ®u(Tpuui(y)exp(Gluy)) Wy =

DO(x,t, Tyy1 (1)) exp(G(u))W,i,q, converge strongly in
Ez7(Qr)as n — +oo. By virtue of VT, (u,) —
VT,..1 (1) weakly in (Ly(Q7))N as n — +oo we have

f O Tyt (1)) Vit Sy (1) exp(Gluay)) Wi dxdt
{m<|u,|<m+1}

— q)(u)Vuexp(G(u))W,i’,7 dxdt
{m<|u|l<m+1}

as 1 — +oo.

with the modular convergence of W
letting y — +co we get (73).

Proof of (74): we have

f (it Vit) Sy (1) Vit
Qr

,, as j — +oo and

x exp(G(tt)) exp(Gluy)) Wit dx dt

= f an(ty, V”n)s;:n(un)vun
{m<|uy,|<m+1}

X exp(G(un))WIZ',; dxdt

San a,(uy,, Vu,)Vu, dxdt.
{m<|u,|<m+1}

Using (60), we get

a,(u,, Vu,)S,, (u,)Vu, exp(G(un))W,Z’,; dxds

Qr
< e(n, p,m).
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Proof of (76): Since S,,(r) <1 and W, <1 we get

f,, m(it,) exp(Glu,))Wii  dxdt < e(n,n),

J h(x, t)exp(G(un))W,:l,’,;Sm(un) dxdt < Cn.
Qr

Proof of :

fQ (11, Vit,)S o (14,) exp(G 1) VWit dx dt
T

- 0, (Telut,), VTi(10,)
{I“nIsk}n{OSTk(un)_Tk(vj)lu)Sq}
XSm(un)eXP(G(un))(VTk(un>_VTk(vj)y)dxdt
_.r an(uwvun)
{lun|>k}m{0STk(un)_Tk(vj)y)sn}
X Sp(uy) exp(G(uy,))VTi(v)), dxdt (79)
Since  a,(Tiyy (1), VTkyy(uy)) 1is bounded in
(LM(QT))N there exist some @y, € (LM(QT))N
such that a,(Tiy, (4y), VTiiy (1)) — @pyyy weakly in
(Lag(Qr ).
Consequently,

aﬂ(ui’l’ Vun)sm(un)
j)y)Sq}

exp(G(u,))VTi(vj), dxdt

{lun>k})N{0< Ty (uy,)=Ti (v

J (Dkﬂ]
{lu>KIN{O<Ty (u)=Tic(vj), )<}

X Sy (u)exp(G(u))VTi(v)), dxdt + e(n), (80)

where we have used the fact that
S () €xP(G (14))V Tie (V) ) X {1, 1>k 0Ty (1)~ T (v;),0) <17}

— S (1) exp(G(u))V Tie (V) ) X flul>kin{0< Ty () -Te (v;),) <7}
strongly in (Ep(Qr))N.
Letting j — +co, we obtain

)

{lu>k}N{0< Ty (u)=Tie(v}) ) <1}

Sm(u)exp(G(u))VTi(vj), dxdt

J Dy
{lul>k}N{0<Ti (u)=Te (u) ) <1}

Syn(1) exp(G(u)V Ti (1), dx dt + e(n, ),
One easily has,

(lul>kINO< Ty ()~ Te (1)) <)

=e(n,j, p.

By (70)-(76), and we obtain
an(Tk(un)f VTk(”n))Sm(un)
{lunlgk}n{OSTk(un)*Tk(vj)y)SVI}

up))(VTi(uy) = VTi(

exp(G( vj)y)dxdt
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Sim(u)exp(G(u))VTi(u), @, dxdt

<Cn+e(n,j,pum),

we know that exp(G(u,)) > 1 and S,,(u,) = 1 for |u,| <k

then

an(xr t Tk(un)fVTk(un))

(I <K N(O<Ti (1)~ Ti (v}, ) <)

X (VT (1) = VTi( (81)

Proof of (77): Setting for s > 0, Q° = {(x,f) € Q :
|[VTi(u)] < s} and Q;. ={(x,t) € Q:|VT(v;)| < s} and de-
noting by x° and )(j the characteristic functions of Q°

vj)”)dxdt <Cn+e(n,j,pum).

and Q; respectively, we deduce that letting 0 <0< 1,

define
®n,k = (a(Tk(un)lVTk(un)) - a(Tk(

X(VTk(”n) - VTk(u))

un)lVTk(u)))

For s > 0, we have

o<JQS@ pdxdt= [, 0} <y dxdt

1,k X{O< Ty (1)~ Tie (v

o
+J- O kX (Tl )-Ti(wy), >y AX At

The first term of the right-side hand, with the Holder
inequality,

o
Jor @ kX 10 Te1ty)~Ti(wy), <) Ax At <

<jQ O,k X (0T 1) T0 ), A1) <j dxdt)=

<G (.f O3,k X{0< Ty (1)~ Ti (v7) <11} dxdt)®

Also using the Holder inequality, the second term of
the right-side hand is

J-QS O L X (Ty(1ty)- Ty (v), oy} AX A < (J@ ©,,x dxdt)’

x(j dxdt)!=°
{Tk(un)_Tk(U‘) >'7}

since a(x, t, Ty (1), VTi(u,)) is bounded in ( % N,
while VTi(u,) is bounded in (Lp(Qr)) then

Jor @ i XTiun)-Ty(vy)n dxdt < Comeas{(x,t) € Qr :

| T (14,) = Tk(vj)yl > ’7}1_5
We obtain,

J- G)S,k dxdt < Cl(JQ O,k X{0< Ty (1,)~Ti (v dxdt)

+Comeas{(x,t) € Qr : Ty (uy) = Ti(v}), > e

On the other hand,
_[QS ®n,kX{OSTk(u,,)—Tk(vj)’,Sr]} dxdt

< JOSTk(u,l)ka(vj)}ASr[(a(Tk(u”)'VTk(un))

=a(Ty(uy), VT (1) xs

N(VTi(un) = VTi(u)xs)dxdt
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For each s > r,r > 0,one has _J a(Tk(u),O)VTk(vj)ﬂdxdt
0< IQm{OSTk(u,,)_Tk(yj)ﬂg,,,(ﬂ(Tk(un)’VTk(un)) (Il (1)~ Ti vl <1
—a(Ti (), VT ()(VTi (1) — VT (1) dx dlt < Crp+e(mm, j )

The second term of the right-hand side tends to
< S0ty Ttz (T4, VTil )

_ _ @k (VTi(vj)x; = VTi(vj),) dxdt
a(Ty(u,), VT (u)) (VT (1) = VT (1)) dx dt ‘LlTk(“)—Tk(Uj)y|<'I] jIAj Ju

= T , VT (uy, . . .
JQSH{OsTk(un)—Tk(vj)ysrll(a( (i), V(1)) since a(Ty(uy,), VT (u,)) is bounded 1n(LM(QT))N,there

B 3 exist some @} € (LM(QT))N such that (for a subse-
al Tio0y), V() (Vi) =V Tluha)dxdt o o O oy o

= Jantostun) - on (4 Tr00n) V(02 a(T(1), VTi) > @4 in (L (Qr)™

for o(I1Lz; I1Ey)

S,7}(‘1(Tk(”n):VTk(”n)) In view of the fact that
. . (VTi(px; = VT(0)u) X (0<Ti ()T (o))<} -
~a(Telun), V(i) xp)(VTie () = VTi(v))xj) dx dt (VTi(v)x; = VTi(v})u) X {0< Ty (w)-T(v)),<n) Strongly in
(EM(QT))N as n — +oo.
the third term of the right-hand side tends to
NS
Jto<tutu-itupp s AT VT )x3)

—a(Tie(uy), V() X))V T () = VT (u) x°) dx dt

LOSTk(”n)_Tk(Uj)y

+f a(Ti (), VTe(1))
{OSTk(un)*Tk(Uj);ASV/}

X(VTi(v))x; = VTi(u)x*) dxdt L) VT
Ay

J (( ( ) ( )S) Since a(Tk(un);VTk(vj)X;))X{OSTk(un)—Tk(vj)ﬂgq} e

+ a(Ty(uy,), VI (vi)x; s ) = N

L :\f}ﬁli:u)’VTk(v])Xj))X|Tk(“)—Tk(vj)M|S’1 in  (Ez(Qr))

—a(Tie(un), VTi (1) x*)V Ti () dx dt
(VTi(uy) = VTi(vj)x;) = (VTi(u) = VTi(v)x3))

in (Ly(Qr))N for o(I1Ly;, T1Ey) Passing to limit as
j— +co and y — +o0o and using Lebesgue’s theorem,
we have

-| a(Te(14), VT(v;)1)
{OSTk(un)_Tk(vj)}ASYI}

xVTk(vj))(;)dxdt
I <Cn+e(nj,s,p

For what concerns I, by letting n — +o0, we have

«f Tl VT ()¢ Tilu) ) dx
{0<Ty (u)=Ti(v})u<n}

=1,(n,j,5)+ Io(n, ) + I3(n, ) + Ia(n, j, ) + Is(n, p) I — o< Te(on <n}@k(VTk(vj)X; = VTi(u)x*)dxdt
we will go to the limit as n, j, 4, and s = +c0 I} = ]V
LOSTk(un)_Tk(Uj)PSU}a(Tk(“n)’VTk(un)) Since a(Ti(uy), VTi(uy)) — @k in (Ly(Qr))Y, for

o (ILzp, TTEy), while (VT (07) x5 =V Ti(4) X *) X {0< Ty 10,)- T (07),<n)
x(VTk(un)—VTk(vj)F)dxdt

= (VT(vj)x; = V() X)X (0< Ty ()~ Tiv;),l<11)

_f a(T(uy), VTi(uy))
{0<T (uy)=Ti(v}) <17}
(1) =Tie(v;)=<n strongly in (Ep(Qr))N.
X(VTk(Uj)X; - VTi(vj),)dxdt Passing to limit j — +oco, and using Lebesgue’s theo-
rem, we have
_[{OSTk(W)_Tk(W)m} a(Ti (1), VTi(v})x3)) I, = e(n,j)

Similar ways as above give
X(VTi (1) = VTi(v))x})) dxdt ! i

I; = ]
Using , the first term of the right-hand side, 3=l ))
we get e ATy (1), VT (1)) (VT (1) —
& {0< Ty (1)~ T (v) <) " " " 4= J a(Ty(u), VTi(u))VTi(u)dx dt
VTi(vj),)dxdt (0= T ()= Te(u),<n)

< Cn+e(nm,j,s) +e(n, j, p,s,m)
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I5 :f a(Ty(u), VTi(u))VTi(u)dxdt
{0< Ty (u)~Tie (u) <17}

+e(n, j, u,s,m)
Finally, we obtain,

J O, dxdt < Ci(Cn+e(n, p,11,m))° + Cole(n, ) 0

Which yields,by passing to the limit sup over n,j,u,s
and 7

Since p € Ll(lR), we get

lim sup j p(u, )M (x,Vuy,)dxdt =0
h—0p,eNv {u,>h}

Similarly, let go(u j P(5) X s<—mdx in (26), we have
also
lim sup f p(uy)M(x,Vu,)dxdt =0
h—=0neIN J{u,<—h)

i [(@(T 1), VT 1))~ (Ty 1), VTi () conclude that
Q" P{O<T, (T (1)~Tx (1),0)
lim supj (u,)M(x,Vu,)dxdt =0 (84)
(VT (uy,) - VTk(u))]‘S dxdt = e(n) (82) h—0 eI Jju,|>h) Pt
Taking on the hand the function W,”ﬁ = T,(Tx(u,) = Let D C Qr then
(Te(vj),)™ and Wy, = T, (Te(u) = (Tic(v))) )"
Multiplying the approximating equation by f p(uy,)M(x,Vu,)dxdt < max p(y)J- M(x,Vu,)dxdt
n,j ) {lunl<h) DN([uy,|<h)
exp(G(u,)))Wy,uS(uy,), we obtain
+ (u,)M(x,Vu, )dxdt
f [(a(x, Ty (1), V(1)) Ln{|14n|>h} Pt "
QT (Ti(1ty)~(Te(v))),)<0)

VT (1)) dxdt = e(n)
(83)

o, Tit), VT () (VT 1) -
by and we get
| 10t ), Vi) =t Ty, VT )

x(VTi(u,) = VTi(1))])? dxdt = e(n)

Thus, passing to a subsequence if necessary, Vu,, —
Vu a.e. in Q', and since r is arbitrary,

Vu, - Vu ae.in Qr

Step 4: Equi-integrability of the nonlinearity se-
quence
We shall prove that H,(u,, Vu,) — H(u,Vu) strongly

in LY(Qr).

Consider go(u,) = J- ' p(s)X(s>nyds and multiply
0

by exp(G(u,))go (1) , we get

[jQT B(x, un)dx]§+LTa(, b Vit )V (XD (G (14) g0 1) xd,

+J Dyt VitV (exp( Gl go 1)) dxdt
Qr

+ H, (u,, Vu,)exp(G(
Qr

un))go(un))dxdt

S‘L p(S)dx)eXP(”p”L DIl o)+ bt o))

where BJ!(x,7) = [; 25 ¢)(s) exp(G(Tx(s)))ds > 0

then using same techmque in step 2 we can have

j p(un)M(vaun)dxdt S C(J\
fu>h) 0

www.astesj.com

+00

p(s)dx)

Consequently p(u,)M(x,Vu,) is equi-integrable. Then
p(u,)M(x,Vu,) converge to p(u)M(x,Vu) strongly in
LY(IR). By (T6), we get our result.

As a conclusion, the proof of Theorem is com-
plete.
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